http://www.zh61.com.cn- 真好未来星

未来星网 真好未来星 Rss 2.0 会员中心 会员注册
搜索: 您现在的位置: 真好未来星 >> 数理化 >> 数学 >> 微积分 >> 正文

微积分 牛顿-莱布尼茨公式

作者:佚名    文章来源:本站原创    点击数:    更新时间:2018-09-29

牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。

基本信息
中文名称:牛顿-莱布尼茨公式

别称:牛莱法则

提出者:牛顿和莱布尼

 应用学科:数学

基本简介
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,则

牛顿-莱布尼茨公式 

这即为牛顿-莱布尼茨公式。

理解:

比如路程公式: 距离s=速度v*时间t,即s=v*t,那么如果t是从时间a开始计算到时间b为止,t=b-a,而如果v不能在这个时间段内保持均速,那么上面的这个公式(s=v*t,t=b-a)就不能和谐的得到正确结果,于是引出了定积分的概念。

公式应用
那么如何在用积分得到上述路程公式呢?

路程公式 
公式

这个公式能表明路程s是每个不同速度时候行驶的时间和当前速度乘积的和。

牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。下面就是该公式的证明全过程:

对函数f(x)于区间[a,b]上的定积分表达为:

b∫a*f(x)dx

现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:

Φ(x)= x∫a*f(x)dx

但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:

Φ(x)= x∫a*f(t)dt

研究这个函数Φ(x)的性质: 1、定义函数Φ(x)= x(上限)∫a(下限)f(t)dt,则Φ 与格林公式和高斯公式的联系

'(x)=f(x)。

公式证明
证明:让函数Φ(x)获得增量Δx,则对应的函数增量

ΔΦ=Φ(x+Δx)-Φ(x)=x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt

显然,x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=x+Δx(上限)∫x(下限)f(t)dt

而ΔΦ=x+Δx(上限)∫x(下限)f(t)dt=f(ξ)·Δx(ξ在x与x+Δx之间,可由定积分中的中值定理推得,

也可自己画个图,几何意义是非常清楚的。)

当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有lim Δx→0 ΔΦ/Δx=f(x)

可见这也是导数的定义,所以最后得出Φ'(x)=f(x)。

2、b(上限)∫a(下限)f(x)dx=F(b)-F(a),F(x)是f(x)的原函数。

证明:我们已证得Φ'(x)=f(x),故Φ(x)+C=F(x)

但Φ(a)=0(积分区间变为[a,a],故面积为0),所以F(a)=C

于是有Φ(x)+F(a)=F(x),当x=b时,Φ(b)=F(b)-F(a),

而Φ(b)=b(上限)∫a(下限)f(t)dt,所以b(上限)∫a(下限)f(t)dt=F(b)-F(a)

把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式。

高阶导数莱布尼兹公式

(uv)^(n)=∑(n,k=0) C(k,n) * u^(n-k) * v^(k)

注:

C(k,n)=n!/(k!(n-k)!)

^代表后面括号及其中内容为上标,求xx阶导数

Tags:微积分,牛顿-莱布尼茨公式  
责任编辑:admin
相关文章列表
高数微积分公式大全
微积分公式大全,希腊字母读法 (Greek Alphabets)
微积分公式与运算法则
微积分常用公式及运算法则(下)
多元数量函数的隐函数定理
常微分方程简介
科普,微积分是个啥?微积分历史
微积分的发现是人类精神的最高胜利
干货!简单易懂这篇微积分教程你一定看得懂!
简明易懂的微积分入门指南,微积分入门教程
二重积分的计算例子
圆球表面积公式用微积分如何推导?球表面积求解,旋转体表面积求…
揭秘行星椭圆轨道:万有引力定律与微积分的奥妙
如何用微积分计算椭圆面积?椭圆面积公式推导
球的表面积和球的体积的公式推导,都能看懂的微积分
微积分知识推导球的体积公式详细过程
用微积分来计算不规则的空心圆环形成的体积
用微积分来计算不规则图形的体积,微积分求导
三种微积分的方式推导球的体积公式!  球体积公式推导过程
微积分:常用公式、微分方程、级数
微分中值定理
微积分发明史
微分几何
第11 章「导数和图像」图解普林斯顿微积分读本 10
第四章 「连续和可导性」图解《普林斯顿微积分读本》04
第三章「极限导论」-图解普林斯顿微积分读本 03
第二章「三角学回顾」-图解《普林斯顿微积分读本》
第一章 函数、图像和直线-图解《普林斯顿微积分读本》01
牛顿-莱布尼茨公式
微积分通俗演义:动画图解普林斯顿微积分
请文明参与讨论,禁止漫骂攻击,不要恶意评论、违禁词语。 昵称:
1分 2分 3分 4分 5分

还可以输入 200 个字
[ 查看全部 ] 网友评论
关于我们 - 联系我们 - 广告服务 - 友情链接 - 网站地图 - 版权声明 - 在线帮助 - 文章列表
返回顶部
刷新页面
下到页底
晶体管查询